Content Analysis of Syndromic Twitter Data
نویسندگان
چکیده
Objective We present an annotation scheme developed to analyze syndromic Twitter data, and the results of its application to a set of respiratory syndrome-related tweets [1]. The scheme was designed to differentiate true positive tweets (where an individual is experiencing respiratory symptoms) from false positive tweets (where an individual is not experiencing respiratory symptoms), and to quantify more finegrained information within the data.
منابع مشابه
Detection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets
Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...
متن کاملDetection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets
Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...
متن کاملA Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks
The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...
متن کاملSemantic Analysis of Open Source Data for Syndromic Surveillance
Objective The objective of this analysis is to leverage recent advances in natural language processing (NLP) to develop new methods and system capabilities for processing social media (Twitter messages) for situational awareness (SA), syndromic surveillance (SS), and event-based surveillance (EBS). Specifically, we evaluated the use of human-in-the-loop semantic analysis to assist public health...
متن کاملSyndromic Surveillance using Generic Medical Entities on Twitter
Public health surveillance is challenging due to difficulties accessing medical data in real-time. We present a novel, effective and computationally inexpensive method for syndromic surveillance using Twitter data. The proposed method uses a regression model on a database previously built using named entity recognition to identify mentions of symptoms, disorders and pharmacological substances o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2013